Recall: Let A be a $n \times n$ matrix. We call a vector \boldsymbol{x} in \mathbb{R}^n an *eigenvector* of A with corresponding *eigenvalue* λ (a scalar) if

 $A x = \lambda x, \qquad x \neq 0$

(1)

Example: Consider a 3×3 matrix A and suppose that

$$A\begin{bmatrix}1\\0\\-1\end{bmatrix} = \begin{bmatrix}3\\0\\-3\end{bmatrix}$$
(2)

Find an eigenvector of A and the corresponding eigenvalue. Find another eigenvector of A.

$$A \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \underbrace{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

The vector $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\chi = 3$.

$$A \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} = A \begin{pmatrix} 2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \end{pmatrix} = 2A \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$= 2 \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ -6 \end{bmatrix} = \underbrace{3} \begin{bmatrix} 2 \\ 0 \\ -7 \end{bmatrix}$$

The vector $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\chi = 3$.

Theorem 1: Let A be a $n \times n$ matrix. Then a vector \boldsymbol{x} in \mathbb{R}^n is an *eigenvector* of A with corresponding *eigenvalue* λ (a scalar) if and only if

 $(A - \lambda I) \boldsymbol{x} = \boldsymbol{0}, \qquad \boldsymbol{x} \neq \boldsymbol{0}$

Proof Idea: (A-21) = 0 = Az - 27 = 0 = Az = 22

Example: Consider a 3×3 matrix A and suppose that

$$(A - 2I) \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
(4)

(3)

Find an eigenvector of A and the corresponding eigenvalue. Find another eigenvector of A.

$$(A-2-I)\vec{x}=\vec{0}$$
 where $\lambda = 2$ $\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$
By theorem 1, $\vec{x} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ is an eigenvector of A with cigonnalue $\lambda = 2$.
 $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ in null $(A-2I)$.

Recall that
$$\operatorname{null}(A - 2I)$$
 is a subspace.
Thus $\begin{bmatrix} 2\\2 \end{bmatrix}$ in $\operatorname{null}(A - 2I)$.
By theorem 1, $\begin{bmatrix} 2\\2 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\mathcal{X} = Z$.